

Extension of conventional MHD equilibrium theory to model the fast particle effects

V.D. Pustovitov

5th ITER International Summer School Aix en Provence, France, June 20 - 24, 2011

Motion of a single particle

$$m_p \frac{d\mathbf{v}_p}{dt} = \mathbf{F} = q_p (\mathbf{E} + \mathbf{v}_p \times \mathbf{B})$$

depends on the electric and magnetic fields E and B created by all other particles and external sources

$$- \quad ' \times \frac{- \quad '}{\mid - \quad \mid} dV'$$

Standadrd MHD equations

Force balance:
$$\rho d\mathbf{v} / dt = -\nabla p + \mathbf{j} \times \mathbf{B}$$
 with

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$$
 in equilibrium $\nabla p = \mathbf{j} \times \mathbf{B}$

Maxwell eqns:
$$\nabla \cdot \mathbf{B} = 0$$
, $\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$, $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

& sometimes $\mathbf{E} + \mathbf{v} \times \mathbf{B} = 0$ magnetic flux conservation

Currents in the equilibrium plasma

With
$$\nabla p = \mathbf{j} \times \mathbf{B}$$
 in equilibrium

we have,
$$\mathbf{j}_{\perp} = \frac{\mathbf{B} \times \nabla p}{\mathbf{B}^2}$$
, $\mathbf{j} = \mathbf{j}_{\perp} + \mathbf{j}_{\parallel}$ and

$$\nabla \cdot \mathbf{j} = \mathbf{0} \qquad \qquad \cdot \cdot \mathbf{j}_{\parallel} = -\nabla \cdot \mathbf{j} = \frac{\mathbf{B} \times \nabla}{\mathbf{B}^4} \cdot \nabla \mathbf{B}^2$$

Alternative: kinetic approach $\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{\mathbf{F}}{m_p} \cdot \nabla_{\mathbf{v}} f = \frac{\delta f}{\delta t}_{coll}$

when averaged:

Distribution of **fast ions** produced by additional heating systems

"is strongly anisotropic,

with the NBI produced **fast ions** flowing predominantly **parallel** to the magnetic field, and the ICRH **accelerated ions** characterized by large **perpendicular** energy and mostly trapped orbits"

Fasoli A., et al., Nucl. Fusion 47 S264 (2007).*Progress in the ITER Physics Basis*Chapter 5: Physics of energetic ions

With such fast ions $\vec{p} \neq p\vec{\mathbf{I}}$ and $\nabla \cdot \vec{p} \neq \nabla p$

Then we assume

$$\vec{p} = p_{\parallel} \frac{\mathbf{B}\mathbf{B}}{\mathbf{B}^2} + p_{\perp} \quad \mathbf{\ddot{I}} - \frac{\mathbf{B}\mathbf{B}}{\mathbf{B}^2}$$

the most simple form of the pressure tensor with anisotropy.

$$(p_{\parallel},p_{\perp}) = m_p (v_{\parallel}^2,\frac{v_{\perp}^2}{2}) f d\mathbf{v}_p,$$

parallel and perpendicular pressures

9

Examples from Zwingmann et al 2001 PPCF 43 1441

General relations

Start from general equilibrium equations

$$\nabla \cdot \vec{p} = \mathbf{j} \times \mathbf{B}, \quad \mu_0 \mathbf{j} = \nabla \times \mathbf{B}$$

Most popular assumptions

$$p_{\parallel} = p_{\parallel}(a,B), \quad p_{\perp} = p_{\perp}(a,B)$$

with a = const the flux coordinate: $\mathbf{B} \cdot \nabla a = 0$

1. Good for symmetry (tokamaks),

2. Corresponds to the leading order solution of the Fokker–Planck equation for the distribution function f (which is $\mathbf{B} \cdot \nabla f = 0$ in this case)

Other models? Better choice of P_{\parallel} **and** P_{\perp} ?

Examples of p_{\parallel} and p_{\perp} prescription

Zwingmann W, Eriksson L G and Stubberfield P, Equilibrium analysis of tokamak discharges with anisotropic pressure, 2001 Plasma Phys. Control. Fusion 43 1441

Examples of p_{\parallel} and p_{\perp} prescription

Cooper W A *et al* 2005, Three-dimensional anisotropic pressure equilibria that model balanced tangential neutral beam injection effects, *Plasma Phys. Control. Fusion* 47 561

$$\frac{\mathbf{n}(s)}{E} \cdot F(s, E, \mu) = \frac{\mathbf{n}(s)}{E^{3/2}} \prod_{\substack{a \in S \\ c \in I}} \prod_{\substack{a \in S \\ c \in I} \prod_{\substack{a \in S \\ c \in I}} \prod_{\substack{a \in S \\ c \in I} \prod_{\substack{a \in S \\ c \in I}} \prod_{\substack{a \in S \\ c \in I} \prod i$$

"modified slowing down distribution"

"model the effects of balanced tangential neutral beam injection"

Examples: Contours of constant *f*

model for balanced tangential NBI

Cr0Bper

Parallel force balance

$$\nabla p_{\parallel} = \sigma_{\parallel} \nabla (\mathbf{B}^2 / 2) + \mathbf{K} \times \mathbf{B} \qquad \mathbf{B} \cdot \nabla p_{\parallel} = \sigma_{\parallel} \mathbf{B} \cdot \nabla (\mathbf{B}^2 / 2)$$

which is equivalent to
$$\mathbf{B} \cdot \nabla (p_{\parallel} + p_{\perp}) = -\mathbf{B}^2 \mathbf{B} \cdot \nabla \sigma_{\parallel}$$

We have

Parallel force balance: consequences

$$p_{\parallel} \approx p_{\parallel 0} + \frac{p_{\parallel 0} - p_{\perp}}{2} \quad 1 - \frac{\mathbf{B}_{0}^{2}}{\mathbf{B}^{2}} \quad \text{with} \quad p_{\parallel 0} = p_{\parallel 0}(a)$$

in tokamaks and stellarators, $p_{\parallel} - p_{\parallel 0}(a)$ must be small even at large variations of p_{\perp} .

$$p_{\parallel} = p_{\parallel 0} + \widetilde{p}_{\parallel}$$

Large $\widetilde{p}_{\parallel}$ can be produced by very large \widetilde{p}_{\perp} only.

Examples from Zwingmann et al 2001 PPCF 43 1441

Perpendicular force balance

Poloidal ψ and toroidal Φ magnetic fluxes associated with a toroidal magnetic surface

Magnetic diagnostics

Experimental Results

Nucl. Fusion 45 (2005) L33–L36 Marine Marin

"In low density discharges of a Large Helical Device (LHD), **anisotropic pressure** is expected because the LHD has powerful tangential neutral beam injection systems.

We show the strong correlation between the **pressure anisotropy** due to the beam pressure based on Monte Carlo calculations and the ratio of the diamagnetic loop signal and the saddle loop signal."

Large Helical Device (LHD)

All superconducting coil sysf1all su..i62T32tdfj0 3.228TD.0

sysf1all su..i5205m0dtj0 3.228T00

K.Y. Watanabe, et al., P2-35, ITC-2009

Numerical calculated prediction of anistropic pressure from the beam

Plasma equilibrium with toroidal rotation

$$\rho(\mathbf{v}\nabla)\mathbf{v} = -\nabla \vec{p} + \mathbf{j} \times \mathbf{B}$$

Plasma with toroidal rotation, estimates

 Proton mass
 mass density

 $m_p = 1.67 \times 10^{-27} \text{ kg}$ $\rho = m_p n = 1.67 \times 10^{-7} \text{ kg/m}^3$

 Plasma density
 $n = 10^{20} \text{ m}^{-3}$ Compare to

 $n = 10^{20} \text{ m}^{-3}$ $\varphi = 10^3 \text{ kg/m}^3$ $\rho = 1.29 \text{ kg/m}^3$

ITER: plasma volume $V_{plasma} = 870 \text{ m}^3$ **Mass of H plasma** $M = \rho V_{plasma} = 1.45 \times 10^{-4} \text{ kg}$

Rotation and Shafranov shift

$$\Delta' = \Delta'_{S} - \frac{a}{R} \frac{\rho v_{t}^{2} - \rho v_{t}^{2}}{B_{\theta}^{2}} \text{ with } \Delta'_{S} = -\frac{a}{R} \frac{l_{i}}{2} + 2\frac{p}{B_{\theta}^{2}}$$
with $l_{i} \equiv \overline{B_{\theta}^{2}} / B_{\theta}^{2}$ and $\overline{X} \equiv \frac{2}{a^{2}} \int_{0}^{a} X \rho d\rho$

Rotation and Shafranov shift - 2

$$\Delta'(b) = -\frac{b}{R} \frac{l_i}{2} + \frac{2p + \rho v_t^2}{B_J^2}$$

The global effect of toroidal rotation is larger outward shift, but only weak increase

Summary

- **Fast particles create the pressure anisotropy and rotation**
- Ø In equilibrium, the deviations from conventional MHD must be mainly related to P_{\perp}

$$p_{\parallel} 1 + \frac{\mathbf{B}_0^2}{\mathbf{B}^2} + p_{\perp} 1 - \frac{\mathbf{B}_0^2}{\mathbf{B}^2} \approx 2p_{\parallel 0}$$

Ø In some cases it must be possible to estimate the degree of pressure anisotropy by magnetic measurements

$$\mathbf{j}_{\perp}$$
 is determined by p_{\perp} , while \mathbf{j}_{\parallel} is ~ determined by $p_{\parallel} + p_{\perp}$

For more details see

 Pustovitov V.D., Equilibrium of Rotating and Nonrotating Plasmas in Tokamaks, Plasma Physics Reports 29 (2003) p. 105.

Backup slides

Experiments on -10

V.F. Andreev, et al., *"The ballistic jump of the total heat flux after ECRH switching on in the T-10 tokamak"* Plasma Phys. Control. Fusion **46**, 319 (2004).

Experiments on TEXTOR

M.Yu. Kantor, et al., "Thomson scattering diagnostic for study fast events in the TEXTOR plasma"*36th EPS Conf. Plasma Phys. (Sofia, June 29 – July 3 2009)* P-1.184

Equations for the heat transport in V.F. Andreev, et al., Plasma Phys. Control. Fusion **46**, 319 (2004).

Our main equations in

[3] V.D. Pustovitov and S.A. Stepanyan, Plasma Phys. Control. Fusion 53, 035004 (2011). [4] V.D. Pustovitov, Plasma Phys. Rep. 37, 109 (2011).

Force balance: $\rho d\mathbf{v} / dt = -\nabla p + \mathbf{j} \times \mathbf{B}$

 $\nabla p = \mathbf{j} \times \mathbf{B}$

Integral energy balance

Integrate

S